Elevated Levels of Cartilage Oligomeric Matrix Protein during In Vitro Cartilage Matrix Generation Decrease Collagen Fibril Diameter

نویسندگان

  • Y.M. Bastiaansen-Jenniskens
  • A.C.W. de Bart
  • W. Koevoet
  • K.M.B. Jansen
  • J.A.N. Verhaar
  • G.J.V.M. van Osch
  • J. DeGroot
چکیده

Cartilage oligomeric matrix protein (COMP) is a protein present in the cartilage matrix and is expressed more abundantly in osteoarthritis cartilage than in healthy cartilage. The present study was designed to investigate the effect of transforming growth factor β (TGFβ) on COMP deposition and the influence of COMP on collagen biochemistry in a long-term 3-dimensional culture. Bovine chondrocytes in alginate beads were cultured with or without 25 ng/mL TGFβ2 for 21 or 35 days. COMP was overexpressed in bovine chondrocytes using lentiviral transfection. COMP gene expression, COMP protein production, collagen and proteoglycan deposition, and collagen fibril thickness were determined. Addition of TGFβ2 resulted in more COMP mRNA and protein than the control condition without growth factors. Lentiviral transduction with COMP resulted in elevated gene expression of COMP and increased COMP levels in the alginate bead and culture medium compared to untransfected cells. Overexpression of COMP did not affect the deposition of collagen, collagen cross-linking, proteoglycan deposition, or the mechanical properties. Stimulating COMP production by either TGFβ2 or lentivirus resulted in collagen fibrils with a smaller diameter. Taken together, COMP deposition can be modulated in cartilage matrix production by the addition of growth factors or by overexpression of COMP. Inducing COMP protein expression resulted in collagen fibrils with a smaller diameter. Because it has been demonstrated that the collagen fibril diameter is associated with mechanical functioning of the matrix, modulating COMP levels should be taken into account in cartilage regeneration strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of Extracellular Matrix Molecules in Interleukin-1 Alpha Treated Bovine Nasal Cartilage

Background: This work aimed to show and compare the degradation time of some of cartilage extracellular matrix components using an in vitro model for cartilage degradation induced by interleukin-1 alpha. It is known that elucidation of molecular events under Interleukin-1 alpha induction of bovine nasal cartilage could obtain useful data to understand more about involving mechanisms for tissue ...

متن کامل

COMP acts as a catalyst in collagen fibrillogenesis.

We have previously reported that COMP (cartilage oligomeric matrix protein) is prominent in cartilage but is also present in tendon and binds to collagens I and II with high affinity. Here we show that COMP influences the fibril formation of these collagens. Fibril formation in the presence of pentameric COMP was much faster, and the amount of collagen in fibrillar form was markedly increased. ...

متن کامل

Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX.

The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce c...

متن کامل

Importance of Floating Chondrons in Cartilage Tissue Engineering

BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...

متن کامل

Thyroid hormones increase collagen I and cartilage oligomeric matrix protein (COMP) expression in vitro human tenocytes.

BACKGROUND we previously demonstrated the presence of high levels of thyroid hormones (THs) receptors isoforms in healthy tendons, their protective action during tenocyte apoptosis, and the capability to enhance tenocyte proliferation in vitro. In the present study we tested the ability of THs to influence ECM protein tenocyte secretion in an in vitro system. METHODS primary tenocyte-like cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010